Theorem 3.6: First Derivative Test for Extrema

Let c be a critical number of the function f. If f is continuous in some open interval containing c, and f is differentiable on that interval except possibly at $x = c$, then

1. If $f'(c) = 0$ and $f''(c) > 0$, then $f(c)$ is a local minimum.
2. If $f'(c) = 0$ and $f''(c) < 0$, then $f(c)$ is a local maximum.
3. If $f'(c) = 0$ and $f''(c) = 0$, then the test is inconclusive.

No Extrema points.
$$f(x) = (x+2)^2 (x-1)$$

$$f'(x) = (x+2)^2 + (x-1) \cdot 2(x+2)' \cdot (1)$$

$$f'(x) = (x+2)^2 - 2(x-1)(x+2)$$

$$f'(x) = (x+2)[(x+2) + 2(x-1)]$$

$$f'(x) = (x+2)[x+2 + 2x-2]$$

$$f'(x) = 3x(x+2)$$

$$g = 3x(x+2)$$

$$x = 0 \quad x+2 = 0 \quad x = -2$$

<table>
<thead>
<tr>
<th>$x-2$</th>
<th>$x = -2$</th>
<th>$x < x_0$</th>
<th>$x = 0$</th>
<th>$x > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x - 3$</td>
<td>$x - 1$</td>
<td>$x = 1$</td>
<td>$x = -1$</td>
<td>$x = 1$</td>
</tr>
<tr>
<td>f</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>f'</td>
<td>$+$</td>
<td>$-$</td>
<td>0</td>
<td>$+$</td>
</tr>
<tr>
<td>Conclusion</td>
<td>INC</td>
<td>Max</td>
<td>INC</td>
<td>DEC</td>
</tr>
</tbody>
</table>
\[
\frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)
\]

This gives us the instantaneous rate of change of the 1st derivative with respect to x.

If the 2nd derivative is +, that means the 1st derivative is increasing.

If the 2nd derivative is -, that means the 1st derivative is decreasing.
Concave Downward

f'' is Negative

Spill water
tangent lines are
above the graph

f'' is Decreasing

Concave Upward

f'' is Positive

Tangent lines are
below the graph

$f'(x)$ is Increasing

Point of Inflection

Concave Up

Concave Down

Holds water
The 3,7 Tests for concavity

Def Point of Inflection - a point on the graph where the concavity changes. Possible points of inflection occur where $f''(c) = 0$ or $f''(c)$ DNE but $f(c)$ does exist.
\[y = \frac{1}{x} = x^{-1} \]

cc up

cc down

No point of inflexion

\[f'(x) = \frac{1}{x^2} \]

\[y' = -x^2 = -\frac{1}{x^2} < 0 \]

Dec fnct.

\[y'' = +2x^3 = \frac{2}{x^3} \]

If \(x < 0 \), \(y'' < 0 \) cc down

If \(x > 0 \), \(y'' > 0 \) cc up
Week
3. 3
3. 4

Moe assigned