\[x^2 + y^2 = 2xy \]

Solve for y:

\[y^2 - 2xy + x^2 = 0 \]
\[ay^2 + by + c = 0 \]

\[a = 1 \quad b = -2x \quad c = x^2 \]

\[y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

\[y = \frac{2x \pm \sqrt{4x^2 - 4(1)(x^2)}}{2(1)} \]
\[y = \frac{2x \pm \sqrt{0}}{2} \]
\[y = \frac{2x}{2} \]
\[y = x \]

\[\frac{dy}{dx} = 1 \]
Chapter 3

Extreme Values of a Func.

Maximums

Minimums

Def: $f(c)$ is a maximum value of f on I if $f(c) \geq f(x)$ for all x in I.

Def: $f(c)$ is a minimum value of f on I if $f(c) \leq f(x)$ for all x in I.

The Extreme Value Theorem

If f is continuous on $[a, b]$, then f has a maximum and a minimum value on $[a, b]$.

$f(c)$ is max, $f(b)$ is min.
Def. Let f be defined at $x = c$.

If $f'(c) = 0$ or if $f'(c)$ DNE, the c is called a **critical number** of f.

- $f(c)$ exists.
- $f'(c) = 0$.
- No Extreme b^+.

- $f(c)$ exists.
- $f'(c)$ DNE.
- No Extreme b^-.

- $f(c) = f'(c)$ is Max.
- $f'(c)$ is Min.
- Vertical tangent.
- $f'(c)$ is Max.
- $f'(c)$ is Min.
- Vertical tangent.
- $f'(c) = 0$.
- No tangent.
In 3.2

Relative Extrema Occur Only at Critical #s.

If \(f \) has a relative maximum or minimum at \(x = c \), then \(c \) is a critical # of \(f \).
Critical #s $c = 0$, $f'(c) = 0$

Not an extreme point

Additional question

Domain $(-1,1)$

No absolute max or absolute min (on the domain)
Minimum in (a, b)? Yes! @ $x = c$
Maximum in (a, b)? No!

Ex: Fill in ends f

f is continuous on $[a, b]$, so f has a Max and a Min on $[a, b]$.

Extreme Value Theorem
Max @ a
Min @ c
Find the critical numbers.

\[f(x) = \frac{4x}{x^2+1} \]

\[f'(x) = \frac{(x^2+1) \cdot 4 - 4x \cdot (2x)}{(x^2+1)^2} = \frac{-8x^2}{(x^2+1)^2} \]

\[f''(x) = \frac{-8x^2 - 4 \cdot (x^2-1)}{(x^2+1)^2} = \frac{-4(x^2-1)}{(x^2+1)^2} \]

Set \(f'(x) = 0 \):

\[(x^2+1)^2 \cdot 0 = \frac{-4(x^2-1)}{(x^2+1)^2} \cdot (x^2+1)^2 \]

\[0 = -4(x^2-1) \]

\[0 = x^2 - 1 \]

\[x^2 = 1 \]

\[x = \pm 1 \]

Critical numbers: \(x = \pm 1 \)

Horizontal tangent line:

Max at \(x = 1 \) \(f(1) = 2 \)

Min at \(x = -1 \) \(f(-1) = -2 \)

\(2 \) is absolute max

\(-2 \) is absolute min.
P(6) Extreme Values of functions on a closed interval, \([a, b] \):

1. Find all critical #s
2. Evaluate \(f(\text{critical #s}) \)
3. Evaluate \(f(a), f(b) \)
4. Largest in \(2\) is Max.
 Smallest in \(2\) is Min.
(2) Locate absolute extrema on \([a, b]\)

\(f(x) = x^3 - 12x\) on \([0, 4]\)

\text{Step 1: } \quad f'(x) = 3x^2 - 12

\begin{align*}
0 &= 3x^2 - 12 \\
3x^2 &= 12 \\
x^2 &= 4 \\
x &= \pm 2
\end{align*}

\(x = \pm 2\) are critical points.

\text{Step 2: } \quad f(2) = 2^3 - 12(2) = 8 - 24 = -16 \quad \text{Minimum @ } x = 2

\text{Step 3: } \quad f(0) = 0^3 - 12(0) = 0

\begin{align*}
f(4) &= 4^3 - 12(4) \\
f(4) &= 64 - 48 = 16
\end{align*}

\(x = 4\) is a maximum.
Friday 3.1 Those assigned

Read 3.2

Roll's th

Mean Value th