11/14/2005

Final Exam on MATH 106 CC

Friday, Dec 16
12:30 - 2:30
PH 112
Graph:
\[y = 2x + 1 \]

A solution to this equation is an \(x \) value paired with a \(y \) value that makes the equation true.

\[y = 2x + 1 \]

\[(x, y) \]

If \(x = 0 \), then \(y = 2(0) + 1 = 1 \) \((0, 1) \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

The solution set is infinite:

\((0, 1), (1, 3), (2, 5), (-1, -1) \ldots\)

Graph this solution.

(Picture)
Graph \(y = 2x + 1 \)

- Point \((1,3)\) on the line
- Point \((-1,-1)\) on the line
- Point \((0,1)\) on the line
- Point \((2.5, 5)\) on the line

\[x = \frac{1}{2} \]
\[y = 2 \left(\frac{1}{2} \right) + 1 \]
\[y = 2 \]
Let $y = 0$, solve for x.

Let $x = 0$, solve for y.

x-intercept

y-intercept
Ex: Graph

\[2x + 3y = 6 \]

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

\[2x + 0 = 6 \quad \rightarrow \quad x = 3 \]
\[0 + 3y = 6 \quad \rightarrow \quad y = 2 \]
Graph:

$x = 2$

$x + a \cdot y = 2$

All points on a vertical line have the same x.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
Graph

\[y = 3 \]
\[0 \cdot x + y = 3 \]

All points on a horizontal line have the same y-coordinate.
7.1
System of Linear Equations

7.1 (20)

Solve:

\(x + y = 4 \)
\(-x + y = -2 \)

Find all ordered pairs \((x, y)\) that make BOTH equations true.

Solve the graphing method.

1. \(x + y = 4 \)
 - \(x \)
 - \(y \)
 - \(0 \)
 - \(4 \)
 - \(4 \)
 - \(0 \)

2. \(-x + y = 2\)
 - \(x \)
 - \(y \)
 - \(2 \)
 - \(0 \)
 - \(-2 \)
 - \(0 \)

\(x = 2 \)
\(x = -2 \)
The solution is (1,3)

When x = 1 and y = 3, both equations are true.

Check (1,3):
1. \(x + y = 4\)
 \[1 + 3 = 4\]
 True

2. \(-x + y = 2\)
 \[-1 + 3 = 2\]
 True
In a plane, 2 lines may:

- Intersect in exactly one point: 1 solution
- Parallel lines: No points of intersection; No Solution
- Same line: Infinite # pts of intersection; Infinite Sol.
Wednesday
Do those assigned

6.2
1.1