\[
\begin{vmatrix}
-15 & -8 \\
-15 & 8 \\
1 & -7 \\
1 & 7
\end{vmatrix}
\]
\[
\left(\frac{x}{y} \right)^{-3} = \frac{6}{x^{-3}y^9} = \frac{x}{y^9}
\]
\[
\left(\frac{1}{16^4} \right)^{1/2} = \sqrt{\frac{1}{64}} = \frac{\sqrt{1}}{\sqrt{64}} = \frac{1}{8}
\]

\[
\left(\frac{1}{8^2} \right)^{1/2} = \frac{1}{8}
\]
\[16 \left(\frac{9}{3} \right)^{\frac{3}{2}} \]

\[\sqrt[3]{-xy^2} \]

\[-x^3 y \]

\[(-xy^3) \]

\[-x^3 y \]

\[\frac{1}{3} \]
\[a^4 (x-y)^3 \]
\[= (x-y)(x-y)(x-y) \]
\[(x^2 - 2xy + y^2)(x-y) \]
\[x^3 - 2xy(x-y) + y^3 (x-y) \]
\[x^3 - 2x^2y + 2xy^2 + xy^3 - y^4 \]
\[x^3 - 3x^2y + 3xy^2 - y^3 \]

\[(a+b)^n \]
\[\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \binom{n}{3} + \binom{n}{4} \]
\[1 \quad 3 \quad 3 \quad 1 \]
\[1 \quad 4 \quad 6 \quad 4 \quad 1 \]

\[(x+y)^3 = 1x^3 + 3xy^2 + 3xy + y^3 \]
\[x^3 + 3x^2y + 3xy^2 + y^3 \]
\[(x+y)^3 = 1x^3 + 3xy^2 + 3xy + y^3 \]
\[x^3 + 3x^2y + 3xy^2 + y^3 \]
\[(x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3 \]
\[2x - 3y \]
\[(2x - 3y) \]
\[16x^4 - 96xy^3 + 216x^3y - 216xy^2 + 81y^4 \]
\[\sum_{x} x - 16 \\
(\chi^2 - 4)(\chi^2 + 4) \\
(\chi - 2)(\chi + 2)(\chi^2 + 4) \]
\[30 \quad \frac{3x^2+2y}{x} - 62w - 4yw\]

\[x(3z + 2y) - 2w(3z + 2y)\]

\[(3z+2y)(x-2w)\]
3

3 \times x^4 - 48

3 \left(x^4 - 16 \right)

3 \left(x^2 - 4 \right) \left(x + 4 \right)

3 \left(x + 2 \right) \left(x - 2 \right) \left(x + 4 \right)
3^2

\[f(x) = \sqrt{x-2} \]

\[x-2 \geq 0 \]
\[x \geq 2 \]
\[f(x) = \frac{2}{x^2 - 3x} \]

\[D = \{ x \mid x \neq 0, 3 \} \]

\[x^2 - 3x = x(x - 3) \]

\[x(x - 3) = 0 \]

\[x = 0 \quad x = 3 \]
\[
\frac{x + 2}{x - 4} \div \frac{x + 1}{x - 2} = \frac{x + 2}{x + 1}
\]
\[y - \left(\frac{1}{x} - \frac{1}{y} \right) \left(\frac{xy}{x} \right) \frac{1}{xy} \]
C \((-1, 3)\)

\[r = 6 \]

\[(x-h)^2 + (y-k)^2 = r^2 \]

\[(x+1)^2 + (y-3)^2 = 6 \]

\[(x+1)^2 + (y-3)^2 = 36 \]
1.1 Graphs of Equations
Basic Method - Point Plotting
Example 1
Graph \(y = x^2 - x - 3 \)
Example 2
Graph \(y = x^5 - 2x^3 + 2 \)

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
y = (-1)^5 - 2(-1)^3 + 2
\]
\[
y = -1 - 2 + 2 + 2
\]
\[
y = 3
\]
\[
y = 1 - 2 + 2
\]
\[
y = 1
\]
1.1 Graphs of Equations

Example 3
Use your TI to graph $3y + x^4 - 6x = 2$.
Find the x-intercept and y-intercept.

\[
3y = \left(2 - x^4 + 6x\right)
\]

\[
\frac{3y}{3} = \frac{2 - x^4 + 6x}{3}
\]

x-inter

y-inter

Zero

$X = -0.3313249$ $Y = 0$

Zero

$X = 1.9166733$ $Y = 0$

$Y1 = (2 - X^4 + 6X)/3$

$X = 0$ $Y = 0.66666667$
1.1 Graphs of Equations

Example 4
Use your TI to graph \((x - 3)^2 + (y + 2)^2 - 9 = 0\).

Find the x-intercept and y-intercept

\[
(x - 3)^2 + (y + 2)^2 = 9
\]

\[
(y + 2)^2 = 9 - (x - 3)^2
\]

\[
y + 2 = \pm \sqrt{9 - (x - 3)^2}
\]

\[
y = -2 \pm \sqrt{9 - (x - 3)^2}
\]

Title: Sep 19 - 1:45 PM (18 of 25)
1.1 Graphs of Equations

Example 5

A model for the US federal debt since 1950 can be modeled by the equation...

\[y = 0.223t^3 - 0.733t^2 - 78.255t + 1837.433 \]

Where \(t \) represents the number of years since 1950 and \(y \) represents the per capita debt for those years. Determine the per capita federal debt in 2002 and 2004.
1.2 Lines

Example 1

Find the slope of the line that goes through the following points.

(a) (-2, 4) and (5, 7)

(b) (-3, 6) and (1, -2)

(c) (5, 6) and (5, -2)
1.2 Lines

Example 2

Find the equation of the line that goes through the points.

(-5, 1) and (-3, -5)
Example 2

Find the equation of the line that is perpendicular to $3x + 4y = 12$ and goes through the point $(2, 5)$.
1.2 Lines

Example 3

A small college had 2546 students enrolled in 1998 and 2702 students in 2000. Assuming a linear growth pattern.

(a) Find the model that relates the enrollment to the year

(b) Use your model to estimate the college’s enrollment figures in 2004.
1.2 Lines

Example 4

A real estate office handles an apartment complex with 50 units. When the rent per unit is at $580 per month, all 50 units are occupied. However, when the rent is raised to $625 per month, the average number of occupied units drops to 47. Assume the relationship between the monthly rent p and the demand x is linear.

(a) Write the equation of the line giving the demand x in terms of the rent p.

Example 5

The average annual salaries of MLB players (in thousands of dollars) from 1988 to 1998 are given in the table below. Let y represent the average salary and t represent the number of years since. Find the linear regression line.

<table>
<thead>
<tr>
<th>year</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>415,000</td>
</tr>
<tr>
<td>1989</td>
<td>489,000</td>
</tr>
<tr>
<td>1990</td>
<td>592,000</td>
</tr>
<tr>
<td>1991</td>
<td>825,000</td>
</tr>
<tr>
<td>1992</td>
<td>1,005,000</td>
</tr>
<tr>
<td>1993</td>
<td>1,015,000</td>
</tr>
<tr>
<td>1994</td>
<td>1,175,000</td>
</tr>
<tr>
<td>1995</td>
<td>1,107,000</td>
</tr>
<tr>
<td>1996</td>
<td>1,125,000</td>
</tr>
<tr>
<td>1997</td>
<td>1,310,000</td>
</tr>
<tr>
<td>1998</td>
<td>1,398,000</td>
</tr>
</tbody>
</table>