Section 3.1 (Homework)

#19. \(h(x) = 4x^2 - 4x + 21 \quad a = 4 \geq 0 \) opens up

\[
h(x) = 4\left(x^2 - x + \frac{1}{4}\right) + 21 - 1
\]

\[
h(x) = 4\left(x - \frac{1}{2}\right)^2 + 20 \quad \text{vertex } \left(\frac{1}{2}, 20\right)
\]

no x-intercepts

\[
\begin{array}{c|c|c}
 x & 3 & -3 \\
 \hline
 h(x) & 45 & 69
\end{array}
\]

- y-intercept \((0, 21)\)
\[f(x) = \frac{-3}{5} (x^2 + 6x - 5) \quad a = \frac{-3}{5} < 0; \text{opens down} \]

\[= \frac{-3}{5} (x^2 + 6x + 9) + 3 + \frac{27}{5} \]

\[= \frac{15 - 27}{5} + \frac{27}{5} \]

\[f(x) = \frac{-3}{5} (x+3)^2 + \frac{42}{5} \quad \text{vertex} \left(-3, \frac{42}{5} \right) \]

\[\text{x-intercepts: set } f(x) = 0 = \frac{-3}{5} (x^2 + 6x - 5) \]

\[\text{using QUAD: } (5.742, 0) \text{ and } (-6.742, 0) \]
3.3 Real Zeros of Polynomial Functions

Long Division of Polynomials

Example: \[
\frac{6x^3 - 16x^2 + 17x - 6}{3x - 2} = 2x^2 - 4x + 3
\]
The Division Algorithm

If \(f(x) \) and \(d(x) \) are polynomials such that \(d(x) \neq 0 \), and the degree of \(d(x) \) is less than or equal to the degree of \(f(x) \), there exist unique polynomials \(q(x) \) and \(r(x) \) such that

\[
f(x) = d(x)q(x) + r(x)
\]

where \(r(x) = 0 \) or the degree of \(r(x) \) is less than the degree of \(d(x) \). If the remainder \(r(x) \) is zero, \(d(x) \) divides evenly into \(f(x) \).

\[
\frac{f(x)}{d(x)} \text{ is improper.} \quad \frac{r(x)}{d(x)} \text{ is proper.}
\]
Example: Perform long division and write in the form $f(x) = d(x)q(x) + r(x)$.

1. \[\frac{x^5 + 7}{x^3 - 1} \]

\[
\begin{array}{c}
\underline{x-1} \\
\overline{x^5} \\
\underline{0x^4} \\
\overline{0x^3} \\
\underline{0x^2} \\
-\underline{x^2} \\
\overline{0} \\
\end{array}
\]

\[x^2 \]

\[+ x^2 + 7 \]

\[x^5 + 7 = (x^3 - 1)(x^2) + x^2 + 7 \]
Synthetic Division (See pattern for dividing a cubic polynomial on page 279)

Synthetic Division is a short-cut process for dividing a polynomial of any degree by a polynomial of the form \(x - k \).

Example: Use synthetic division to divide.

2. \[
\frac{5x^3 + 18x^2 + 7x - 6}{x + 3}
\]

\[
\begin{array}{c|ccccc}
\multicolumn{1}{r|}{-3} & 5 & 18 & 7 & -6 \\
\hline
 & -15 & 9 & 6 \\
\hline
 & 5 & 3 & -2 & 10
\end{array}
\]

\[
\frac{5x^3 + 18x^2 + 7x - 6}{x + 3}
\]

\[
\begin{array}{c|ccccc}
\multicolumn{1}{r|}{-3} & 5 & 18 & 7 & -6 \\
\hline
 & -15 & 9 & 6 \\
\hline
 & 5 & 3 & -2 & 10
\end{array}
\]

Coefficients of quotient \(\Rightarrow -3 \) is a zero of the polynomial and \((x + 3) \) is a factor
The Remainder Theorem
If a polynomial $f(x)$ is divided by $x - k$, the remainder is $r = f(k)$.

The Factor Theorem
A polynomial $f(x)$ has a factor $(x - k)$ if and only if $f(k) = 0$.
Using the Remainder in Synthetic Division

In summary, the remainder r, obtained in synthetic division of $f(x)$ by $x - k$, provides the following information.

1. The remainder r gives the exact value of f at $x = k$. That is, $r = f(k)$.

2. If $r = 0$, $(x - k)$ is a factor of $f(x)$.

3. If $r = 0$, $(k, 0)$ is an x-intercept of the graph of f.
Examples:

3. Use synthetic division and the Remainder Theorem to find $f(6)$ for $f(x) = 10x^4 - 50x^3 - 800$.

\[
\begin{array}{c|cccc}
6 & 10 & -50 & 0 & 0 \\
 & & 60 & 60 & 360 & 2160 \\
\hline
& 10 & 60 & 360 & 1360
\end{array}
\]

\[\Rightarrow f(6) = 1360\]
4. Show that \(x = -2 \) is a zero (or root) of
\[f(x) = x^3 + 2x^2 - 2x - 4. \]
Factor completely and find all real zeros.

\[
\begin{array}{cccc}
-2 & 1 & 2 & -2 & -4 \\
 & -2 & 0 & +4 \\
 1 & 0 & -2 & 0 \Rightarrow f(-2) = 0 \Rightarrow \\
\hline
(x^2 + 2) is the other factor \\
(x + 2) is a factor \\
\end{array}
\]

\[x^3 + 2x^2 - 2x - 4 = (x^2 + 2)(x + 2) \]

\[= (x - \sqrt{2})(x + \sqrt{2})(x + 2) \]

real zeros: \(\pm \sqrt{2}, -2 \)
4. Show that $x = 2$ is a zero (or root) of $f(x) = x^3 + 2x^2 - 2x - 4$. Factor completely and find all real zeros.

$x = \sqrt{2}$

\[\begin{array}{c|cc}
\sqrt{2} & 1 & 2 + -2 - 4 \\
\sqrt{2} & 2 + 2\sqrt{2} & 4 \\
\hline
1 & 2 + 2\sqrt{2} & 4 \\
\end{array} \]

$0 \Rightarrow \sqrt{2}$ is a zero

\[x^2 + (2 + \sqrt{2})x + 2\sqrt{2} \]

\[(x + 2)(x + \sqrt{2}) \] etc.
5. Use the Zero feature of your calculator to approximate the zeros of \(f(s) = s^3 - 12s^2 + 40s - 24 \) to three decimal places. Determine one of the exact zeros and use synthetic division to verify it. Factor completely.

\[
\begin{array}{c|cccc}
6 & 1 & -12 & 40 & -24 \\
\hline
 & 6 & -36 & 24 \\
 & _ & -6 & 4 & 0 \\
\end{array}
\]

other factor is \(x^2 - 6x + 4 \)

use QUAD: \(x = 5.24, 0.76 \)

"looks about right"

zeros: 0.76, 5.24, 6
The Rational Zero Test

If the polynomial $f(x) = a_n x^n + \ldots + a_1 x + a_0$ has integer coefficients, every rational zero of f has the form

$$\text{Rational zero} = \frac{p}{q}$$

Where p and q have no common factors other than 1, p is a factor of the constant term a_0 and q is a factor of the leading coefficient a_n.
Examples: List all possible rational zeros.

6. \(f(x) = 4x^4 - 17x^2 + 4 \)

\[
a_n = a_4 = 4 \quad (1)(2)(4) \\
a_0 = 4 \quad (\pm 1)(\pm 2)(\pm 4)
\]

\[
\left(\frac{\text{factor of } a_0}{\text{factor of } a_n}\right) = \frac{\pm 1 \pm 1 \pm 1 \pm 2 \pm 2 \pm 4}{1 2 4 1 1 2 4} \\
\frac{\pm 4 \cdot \pm 4 \cdot \pm 4 }{1 1 1 4 4 4}
\]

same as \(\pm \frac{1}{1} \) etc.

\[
\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm 2, \pm 4
\]
7. \(f(x) = 6x^3 - x^2 - 13x + 8 \)

\[
\begin{cases}
a_n = a_3 = 6: 1, 2, 3, 6 \\
a_0 = 8: \pm 1, \pm 2, \pm 4, \pm 8
\end{cases}
\]

List possible rational zeros:

\[
\frac{p}{q} : \pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{6}
\]

(from \(a_0 \))

(from \(a_n \))

\[
\pm 2, \pm \frac{2}{1}, \pm \frac{2}{3}
\]

\[
\pm 4, \pm \frac{4}{1}, \pm \frac{4}{3}
\]

\[
\pm 8, \pm \frac{8}{1}, \pm \frac{8}{3}
\]
Skip Descartes' Rule of Signs and Upper and Lower Bounds.

Examples: Find all real zeros.

8. \(h(x) = -x^3 - 9x^2 + 20x - 12 \)

possible rational zeros: \(\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12 \)

Standard Screen

no real zeros \(\Rightarrow \) check \(\pm 12 \)

\[
egin{array}{c|cccc}
-12 & 1 & -9 & 20 & -12 \\
 & & 12 & -36 & 192 \\
 & & & -1 & -144 \\
\end{array}
\]

not a zero

\(h(x) = -x^3 - 9x^2 + 20x - 12 \)
9. \(f(z) = 12z^3 - 4z^2 - 27z + 9 \)

Possible rational zeros:

\[
\begin{array}{cccc}
1 & 3 & 12 & -4 & -27 & 9 \\
 & 4 & 0 & -9 \\
 & 12 & 0 & -27 & 0 \\
\end{array}
\]

\(\frac{1}{3} \) is a zero
\((x - \frac{1}{3}) \) is a factor

Other factor is \(12x^2 - 27 \)

Set \(12x^2 - 27 = 0 \)

\[x^2 = \frac{27}{12} = \frac{9}{4} \]

\[x = \pm \frac{3}{2} \]