Section 1.6 continued

Definition: The composition of the function f with the function g is $(f \circ g)(x) = f(g(x))$. The domain of $f \circ g$ is the set of all x in the domain of g such that $g(x)$ is in the domain of f.

Examples: In each of the following, find $(f \circ g)(x), (g \circ f)(x), (f \circ f)(x)$. (Problems from p. 142)

36. $f(x) = \sqrt[3]{x-1}, g(x) = x^3 + 1$

$$(f \circ g)(x) = f(g(x)) = \sqrt[3]{g(x)-1}$$

$$= \sqrt[3]{x^3 + 1 - 1} = \sqrt[3]{x^3} = x \neq 0$$

$$(g \circ f)(x) = g(f(x)) = \left[f(x) \right]^3 + 1$$

$$= \left[\sqrt[3]{x-1} \right]^3 + 1 = x - 1 + 1 = x$$

$$(f \circ f)(x) = f(f(x)) = \sqrt[3]{f(x)-1}$$

$$= \sqrt[3]{\sqrt[3]{x-1}-1}$$
\((f \circ g)(x)\), \((g \circ f)(x)\), \((f \circ f)(x)\)

38. \(f(x) = x^3, \quad g(x) = \frac{1}{x}, \quad x \neq 0\)

\((f \circ g)(x) = f(g(x)) = \left(\frac{1}{x}\right)^3 = \frac{1}{x^3}, \quad x \neq 0\)

\((g \circ f)(x) = g(f(x)) = \frac{1}{x^3}, \quad x \neq 0\)

\(f \circ f(x) = f(f(x)) = [f(x)]^3 = [x^3]^3 = x^9\)
\((f \circ g)(x)\); \((g \circ f)(x)\)

40. \(f(x) = \sqrt{x+3}\) \(g(x) = \frac{x}{2}\)

\((f \circ g)(x) = f(g(x)) = \sqrt{g(x)+3} = \sqrt{\frac{x}{2}+3}\)

\[= \sqrt{\frac{x+6}{2}}\]

\((g \circ f)(x) = g(f(x)) = \frac{f(x)}{2} = \frac{\sqrt{x+3}}{2}\)
52. Use the graphs of \(f \) and \(g \) to evaluate \((a.) \ (f-g)(1) \) and \((b.) \ (fg)(4) \).

\[\text{Graphs of } f \text{ and } g \]

\[a.) \ (f-g)(1) = f(1) - g(1) = 2 - 3 = -1 \]

\[b.) \ (fg)(4) = (f(4))(g(4)) = (4)(0) = 0 \]
66.56. Find two functions \(f \) and \(g \) such that
\[(f \circ g)(x) = h(x) \] if \(h(x) = (1-x)^3 \).

\[
\begin{align*}
g(x) &= 1-x \\
f(x) &= x^3 \\
h(x) &= f(g(x)) = (g(x))^3 \\
 &= (1-x)^3
\end{align*}
\]

Let \(w(x) = \sqrt{x+2} \); find 2 functions \(f \) and \(g \) such that \(w(x) = (f \circ g)(x) \).

1. Let \(g(x) = x+2 \) \(\Rightarrow \) \(w(x) = (f \circ g)(x) = f(g(x)) \)

\[
\begin{align*}
g(x) &= x+2 \\
f(x) &= \sqrt{x} \\
w(x) &= f(g(x)) = f(x+2) = \sqrt{x+2}
\end{align*}
\]

2. Let \(f(x) = \sqrt{x} \) \(\Rightarrow \) \((f \circ g)(x) = f(g(x)) \)

\[
\begin{align*}
f(x) &= \sqrt{x} \\
g(x) &= x+2 \\
\frac{x+2}{2} &= \frac{x+2}{2}
\end{align*}
\]

Note: \(x+2 \neq x+1 \)

\[
\frac{2x+2}{2} = \frac{2(x+1)}{2} = x+1
\]
1.7 Inverse Functions

Definition: Let f and g be two functions such that
\[f(g(x)) = x \] for every x in the domain of g, and
\[g(f(x)) = x \] for every x in the domain of f.
Under these conditions, the function g is the inverse function of the function f.

The function g is denoted f^{-1} (read “f-inverse”).

Therefore
\[f(f^{-1}(x)) = x \quad \text{and} \quad f^{-1}(f(x)) = x. \]

The domain of f must be equal to the range of f^{-1} and
the range of f must be equal to the domain of f^{-1}.

\[\text{Note:} \quad f^{-1} \neq \frac{1}{f} \]
In a previous section, we looked at the functions:

\[f(x) = \sqrt[3]{x} - 1 \quad \text{and} \quad g(x) = x^3 + 1 \quad \text{and found that} \]

\[f(g(x)) = x, g(f(x)) = x \quad \text{implying that} \ f \ \text{and} \ g \ \text{are inverses.} \]

The following shows the graph of \(y = f(x), \ y = g(x), \) and \(y = x. \)

(Note that this is a Square screen.)

The graphs of \(f \) and \(g \) are symmetric in the line \(y = x. \) This is true for any pair of inverse functions.
Examples: Using common sense, find the inverses of the following functions:

\[f(x) = x + 2 \quad \Rightarrow \quad f^{-1}(x) = x - 2 \]

\[f(f^{-1}(x)) = f^{-1}(x) + 2 = x - 2 + 2 = x \quad \checkmark \]

\[f(x) = \frac{x}{3} \quad \Rightarrow \quad f^{-1}(x) = 3x \]

\[f^{-1}(f(x)) = 3f(x) = 3 \left(\frac{x}{3} \right) = x \quad \checkmark \]
\[g(x) = x^2 \]

\[\Rightarrow g(x) \text{ as is does not have an inverse function} \]

What we will do is to restrict the domain of \(g \):

\[g(x) = x^2, \quad x \geq 0 \]

\text{domain } x \geq 0; \text{ range } y \geq 0

\text{Guess: } g^{-1}(x) = \sqrt{x}\]

\text{domain } x \geq 0; \text{ range } y \geq 0
Definition: A function \(f \) is \textbf{one-to-one} if, for \(a \) and \(b \) in its domain, \(f(a) = f(b) \) implies that \(a = b \).

A function \(f \) has an inverse function \(f^{-1} \) if and only if \(f \) is one-to-one.
Horizontal Line Test: If every horizontal line intersects the graph of a function f at most once, then the function is one-to-one. (That is, no horizontal line intersects the graph of the function more than once.)

Examples:

- $y_1 = 2x + 1$

 - **One-to-one function**

 - **Horizontal line test:** passes both

 - **Vertical line test:** passes

- $y_2 = x^2$

 - **Function, not one-to-one**

 - **Horizontal line test:** fails VLT

 - **Vertical line test:** passes HLT

- Not a function

 - **Horizontal line test:** fails VLT
Finding an inverse function:

1. Use the Horizontal Line Test to decide whether f has an inverse function.

2. In the equation for $f(x)$, replace $f(x)$ with y.

3. Interchange the roles of x and y, and solve for y.

4. Replace y by f^{-1} in the new equation.

5. Verify that f and f^{-1} are inverse functions by showing that the domain of f is equal to the range of f^{-1} and the range of f is equal to the domain of f^{-1} and that $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.

Examples: In each case, determine if the function is one-to-one. If so, find its inverse.

\[f(x) = 3x + 5 \]

\[f(x) = 3x + 5 \]

Replace \(f(x) \) with \(y \)

Interchange \(x \) and \(y \)

Solve for \(y \)

This new \(y = f^{-1} \)

Also, find \(f(f^{-1}(x)) \):

\[f(f^{-1}(x)) = 3f^{-1}(x) + 5 \]

\[= 3\left(\frac{x-5}{3}\right) + 5 \]

\[= x - 5 + 5 = x \]
52. \[h(x) = \frac{4}{x^2} \]

Clearly fails the horizontal line test \(\Rightarrow \) it is not one-to-one \(\Rightarrow \) it has no inverse
54. \(q(x) = (x - 5)^2 \)

- Domain: \(x \leq 5 \)
- Range: \(y \geq 0 \)

The function is one-to-one \(\Rightarrow \) it has an inverse.

Replace \(f(x) \) with \(y \):
\[y = (x - 5)^2 \]

Interchange \(x \) and \(y \):
\[x = (y - 5)^2 \]

Solve for \(y \):
\[\pm \sqrt{x} = y - 5 \Rightarrow \sqrt{x} + 5 = y \]
\[y = \pm \sqrt{x} + 5 \]

- Domain: \(x \geq 0 \)
- Range: \(y \leq 5 \)

The new function \(f^{-1} \):
\[f^{-1}(x) = -\sqrt{x} + 5 \]

Also: \((f^{-1})'(x) = \frac{1}{2\sqrt{x}} \)
\[f'(f(5)) = x \]
\[f'(f(5)) = -\sqrt{f(5)} + 5 \%
\[= -\sqrt{(x - 5)^2} + 5 \]
\[= -|x - 5| + 5 \]
\[= -|x - 5| + 5 \]
\[= - (x - 5) + 5 = x - 5 + 5 = x \]

Homework: Sections 1.6 and 1.7
Test #2 Tuesday, October 16
2.1 Linear Equations and Problem Solving

Definitions:
An **equation** in x is a statement that two algebraic
equations are equal.
To **solve** an equation in x means to find all values of x
for which the equation is true.
Values of x for which an equation is true are called its
solutions.
An equation that is true for every real number in the
domain of the variable is called an **identity**.
An equation that is true for just some (or even none) of
the real numbers in the domain of the variable is called
a **conditional equation**.

Examples:

- $x + 3 = 3 + x$, true for all x, **Identity**
- $x + 3 = 2$, true for $x = -1$, **Conditional**
- $x + 3 = x + 2$, never true, **Contradiction**
An equation which is not true for any real number is called a **contradiction**.
A **linear equation in one variable** x is an equation that can be written in the standard form $ax + b = 0$ where a and b are real numbers, with $a \neq 0$.
An **extraneous solution** is one that does not satisfy the original equation. It is often introduced when an equation is multiplied or divided by a variable expression.