Test #3

#5b. \(\sqrt{x+36} = 3 + \sqrt{x} \)

\[\iff (\sqrt{x+36})^2 = (3+\sqrt{x})^2 \]

\[x + 36 = 9 + 6\sqrt{x} + x \]

\[-x - 9 - 9 - x \]

\[27 = 6\sqrt{x} \]

\[\iff \frac{27}{6} = \frac{9}{2} = \sqrt{x} \]

\[\iff \left(\frac{9}{2}\right)^2 = (\sqrt{x})^2 \]

\[\frac{81}{4} = x \]
#7b. \[|x + 1| \leq 3 \]

\[-3 \leq x + 1 \leq 3 \]

\[-1 \quad -1 \quad -1 \]

\[-4 \leq x \leq 2 \]
Intermediate Value Theorem (IVT)

Let a and b be real numbers such that $a < b$. If f is a polynomial function such that $f(a) \neq f(b)$, then in the interval $[a,b]$, f takes on every value between $f(a)$ and $f(b)$.

Example: Use the IVT to find intervals of length 1 in which f is guaranteed to have a zero. Find the zeros. (Hint: Use the TABLE function on your calculator.)

11. $h(x) = x^4 - 10x^2 + 2$
\[h(x) = x^4 - 10x^2 + 2 \]

- \([0, 1]\] in \([0, 1]\)
- \([3, 4]\] in \([3, 4]\)
- \([-4, -3]\]
- \([-1, 0]\] etc.
3.3 Real Zeros of Polynomial Functions

Long Division of Polynomials

Example: \[
\frac{6x^3 - 16x^2 + 17x - 6}{3x - 2} = 2x^2 - 4x + 3
\]

\[
\begin{align*}
3x-2 & \overline{6x^3-16x^2+17x-6} \\
\underline{- (6x^3-4x^2)} & \\
\quad & \underline{- (12x^2+17x)} \\
\qquad & \underline{- (-12x^2+8x)} \\
\quad & \underline{- (9x-6)} \\
\quad & 0
\end{align*}
\]
The Division Algorithm

If \(f(x) \) and \(d(x) \) are polynomials such that \(d(x) = 0 \), and the degree of \(d(x) \) is less than or equal to the degree of \(f(x) \), there exist unique polynomials such \(q(x) \) and \(r(x) \) such that

\[
f(x) = d(x)q(x) + r(x)
\]

\[
\text{dividend} = (\text{divisor})(\text{quotient}) + \text{remainder}
\]

where \(r(x) = 0 \) or the degree of \(r(x) \) is less than the degree of \(d(x) \). If the remainder \(r(x) \) is zero, \(d(x) \) divides evenly into \(f(x) \).

\[
\frac{f(x)}{d(x)} \text{ is improper, } \frac{r(x)}{d(x)} \text{ is proper.}
\]

For \[
\frac{6x^3 - 16x^2 + 17x - 6}{3x - 2}
\]

Write as:

\[
6x^3 - 16x^2 + 17x - 6 = (3x-2)(2x^2 - 4x + 3) + 0
\]

\[
\text{dividend} = (\text{divisor})(\text{quotient}) + \text{remainder}
\]

Because remainder = 0

\(3x-2 \) divides evenly into \(6x^3 - 16x^2 + 17x - 6 \)
Example: Perform long division and write in the form $f(x) = d(x)q(x) + r(x)$.

1. \[
\frac{x^5 + 7}{x^3 - 1} = x^2 + \frac{x^2 + 7}{x^3 - 1}
\]

\[
x^5 + 7 = (x^3 - 1)(x^2) + (x^2 + 7)
\]
Synthetic Division (See pattern for dividing a cubic polynomial on page 267.)

Synthetic Division is a short-cut process for dividing a polynomial of any degree by a polynomial of the form \(x - k\).

Example: Use synthetic division to divide.

2. \[
\begin{array}{c|ccccc}
 \hline
 x+3 & 5x^3 + 18x^2 + 7x - 6 \\
 \hline
 -3 & 5 & 18 & 7 & -6 \\
 \hline
 3 & -15 & -9 & 6 \\
 \hline
 0 & 5 & 3 & -2 & 10
\end{array}
\]

Rightarrow \((x + 3)\) divides evenly into \(5x^3 + 18x^2 + 7x - 6\) and \((x + 3)\) is a factor of \(5x^3 + 18x^2 + 7x - 6\) and \(x = -3\) is a zero

Title: Oct 31 - 10:30 AM (8 of 19)
5x^3 + 18x^2 + 7x - 6 = (x+3)(5x^2 + 3x - 2)

On dividing by \(x+3 \), \(r = 0 \);
\[f(-3) = \]

The Remainder Theorem
If a polynomial \(f(x) \) is divided by \(x - k \), the remainder is \(r = f(k) \).

The Factor Theorem
A polynomial \(f(x) \) has a factor \((x - k) \) if and only if \(f(k) = 0 \).
Using the Remainder in Synthetic Division
In summary, the remainder r, obtained in synthetic division of $f(x)$ by $x - k$, provides the following information.

1. The remainder r gives the exact value of f at $x = k$. That is, $r = f(k)$.
2. If $r = 0$, $(x - k)$ is a factor of $f(x)$.
3. If $r = 0$, $(k, 0)$ is an x-intercept of the graph of f.
Examples:

3. Use synthetic division and the Remainder Theorem to find $f(6)$ for $f(x) = 10x^4 - 50x^3 - 800$.

\[
\begin{array}{c|ccccc}
6 & 10 & -50 & 0 & 0 & -800 \\
\hline
 & 60 & 60 & 360 & 2160 \\
 & & 60 & 60 & 360 & 1360 \\
\end{array}
\]

\[\Rightarrow f(6) = 1360\]
4. Show that \(x = -2 \) is a zero (or root) of
\(x^3 + 2x^2 - 2x - 4 \). Factor completely and find all real zeros.

\[
\begin{array}{c|cccc}
-2 & 1 & 2 & -2 & -4 \\
 & -2 & 0 & 4 \\
\hline
1 & 0 & -2 & 0 \Rightarrow -2 \text{ is a zero} \ (x+2) \text{ is a factor} \\
\end{array}
\]

\[
\text{other factor}
\]

\[
\Rightarrow x^3 + 2x^2 - 2x - 4 = (x + 2)(x^2 - 2)
\]

\[
= (x + 2)(x - \sqrt{2})(x + \sqrt{2})
\]

\[
\text{completely factored over the reals}
\]

Real zeros are: \(-2 \pm \sqrt{2} \)
5. Use the **Zero** feature of your calculator to approximate the zeros of \(f(s) = s^3 - 12s^2 + 40s - 24 \) to three decimal places. Determine one of the exact zeros and use synthetic division to verify it. Factor completely.

\[
\begin{array}{c|cccc}
-6 & 1 & -12 & 40 & -24 \\
 & & 6 & -36 & 24 \\
\hline
 & 1 & -6 & 4 & 0
\end{array}
\]

so \(6 \) is a zero, \((s-6) \) is a factor

\[
s^3 - 12s^2 + 40s - 24 = (s - 6)(s^2 - 6s + 4)
\]

use quad form.

\[
s = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

\[
= \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(4)}}{2(1)} = \frac{6 \pm \sqrt{120}}{2}
\]

\[
= \frac{6 \pm 2\sqrt{30}}{2} = 3 \pm \sqrt{30}
\]

in exact form

Title: Oct 31 - 10:31 AM (13 of 19)
\(f(s) = s^3 - 12s^2 + 40s - 24 \)

\[= \] (over rationals)

\[= (s-6)(s^2-6s+4) \]

(over reals)

\[= (s-6)(s-3-\sqrt{15})(s-3+\sqrt{15}) \]

If \(k \) is a zero, \(s-k \) is a factor.
The Rational Zero Test

If the polynomial $f(x) = a_n x^n + \ldots + a_1 x + a_0$ has integer coefficients, every rational zero of f has the form

$$\text{Rational zero} = \frac{p}{q}$$

Where p and q have no common factors other than 1, p is a factor of the constant term a_0 and q is a factor of the leading coefficient a_n.
Examples: List all possible rational zeros.

6. \(f(x) = 4x^4 - 17x^2 + 4 \)

\(g \) is a factor

\(p: \pm 1, \pm 2, \pm 4 \)

\(q: 1, 2, 4 \)

\(p \) is a factor

\(\frac{b}{q}: \frac{\pm 1}{\pm 2} = \pm \frac{1}{2} \)
7. \[f(x) = 6x^3 - x^2 - 13x + 8 \]

- \(q \) is a factor
- \(p \) is a factor

\(p: \pm 1, \pm 2, \pm 4, \pm 8 \)

\(q: \ 1, 2, 3, 6 \)

\[\frac{P}{q} : \pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3}, \pm \frac{8}{3}, \pm \frac{1}{6} \]
Skip Descartes’ Rule of Signs and Upper and Lower Bounds.

Examples: Find all real zeros.

8. \(h(x) = -x^3 - 9x^2 + 20x - 12 \)

\[
\begin{array}{c|cccc}
-12 & 1 & -9 & 20 & -12 \\
\hline
& 12 & -36 & 192 & \hline
\end{array}
\]

\(f(-12) = 180 \)

???
9. \(f(z) = 12z^3 - 4z^2 - 27z + 9 \)

From graph on calculator and ZERO command,
\(z = 1.5 = \frac{3}{2} \) is a zero.

\[\begin{array}{cccc}
2 & 3 & 12 & -4 & -27 & 9 \\
\hline
18 & 21 & -9 & 0 & 0 & 0 \\
\end{array} \]

\(12, 14, -6 \parallel 0 \Rightarrow \frac{3}{2} \) is a zero

\((z - \frac{3}{2}) \) is a factor

\[12z^2 + 14z - 6 = 2(6z^2 + 7z - 3)(z - \frac{3}{2}) \]

\[= (2z - 3)(2z + 3)(3z - 1) \]

zeros: \(\frac{3}{2}, -\frac{3}{2}, \frac{1}{3} \)

using QUAD

Homework Section 3.3