Section 1.2 (Homework)

#3.

a) $m = 2$

b) $m = 1$ (horizontal)

c) $m = -3$

d) $-3 = \frac{3}{1}$ or $\frac{3}{-1}$
Examples: Graph each of the following on your calculator. Determine the domain and range of each function. For the last two functions, graph in both connected and dot mode.

1. \[y = \sqrt{x + 2} \]

2. \[f(x) = \sqrt{x + 2} \]
 \[f(3) = \sqrt{3 + 2} = \sqrt{5} \]

 alternate notations

domain: \(x \geq -2 \)
range: \(y \geq 0 \)
\[f(x) = \frac{x+1}{x+2} \]

domain: \(x + 2 \neq 0 \)
\[\Rightarrow x \neq -2 \]

Connected Mode
this line is not part of graph

Dot Mode
line is removed
disadvantage: fewer points

domain: \(x \neq -2 \)

range: \(y \neq 1 \)
can't prove this yet
\[f(x) = \frac{x^2 - 1}{x - 1} \]
\[= \frac{(x-1)(x+1)}{x-1} = x+1, \quad x \neq 1 \]

Domain: \(x \neq 1 \)

Standard Screen

Decimal Screen

CALC 1: Value

function is not defined at \(x = 1 \)

Better graph
Definitions: If \(f \) is defined by an algebraic expression and the domain is not specified, the **implied domain** consists of all real numbers for which the expression is defined.

A **piecewise-defined function** is a function that is defined by two or more equations over a specified domain.
Example: A simple example of a piecewise-defined function is the absolute value function. We may write

\[f(x) = |x| = \begin{cases}
 x, & x \geq 0 \\
 -x, & x < 0
\end{cases} \]
Example:

Given:
\[f(x) = \begin{cases}
 x^2 + 2, & x \leq 1 \\
 2x^2 + 2, & x > 1
\end{cases} \]

find \(f(-2), f(0), f(1), f(2) \).

\[
\begin{array}{c|c}
 x & f(x) = x^2 + 2 \\
\hline
-2 & 6 \\
0 & 2 \\
1 & 3 \\
2 & \hline
\end{array}
\]

\[
\begin{array}{c|c}
 x & f(x) = 2x^2 + 2 \\
\hline
-2 & 10 \\
2 & \hline
\end{array}
\]

Standard Screen Connected Mode
Example 8 (p. 105) The Path of a Baseball

A baseball is hit at a point 3 feet above the ground at a velocity of 100 feet per second and an angle of 45 degrees. The path of the baseball is given by the function \(f(x) = -0.0032x^2 + x + 3 \) where \(y \) and \(x \) are measured in feet. Will the baseball clear a 10 foot fence located 300 feet from home plate?

Algebraic solution:

\[f(300) = -0.0032(300)^2 + 300 + 3 = 15 \text{ ft.} \] \(\checkmark \) clears \(10 \text{ ft.} \)

Graphical solution: Set an appropriate Window and graph both \(f(x) \) and the line \(y = 10 \).
Definition: The ratio \(\frac{f(x+h) - f(x)}{h} \), \(h \neq 0 \) is called the difference quotient.

Example: Find the difference quotient for the function \(f(x) = 5x - x^2 \) for \(x = 5 \).

\[
\begin{align*}
 f(x+h) &= f(5+h) = 5(5+h) - (5+h)^2 \\
 &= 25 + 5h - (25 + 10h + h^2) \\
 &= 25 + 5h - 25 - 10h - h^2 \\
 &= -5h - h^2 \\
 f(x+h) - f(x) &= f(5+h) - f(5) \\
 &= -5h - h^2 - 0 = -5h - h^2 \\
 \frac{f(x+h) - f(x)}{h} &= \frac{-5h - h^2}{h} = \frac{h(-5-h)}{h} \\
 &= -5-h
\end{align*}
\]
1.4 Graphs of Functions

Definitions: The graph of a function f is the collection of ordered pairs (x, y) such that x is in the domain of f.

$x =$ the directed distance from the y-axis

$y =$ the directed distance from the x-axis

Example: Find the domain and range

Estimates: domain: $1 \leq x \leq 4$
range: $-1 \leq y \leq 3$
Vertical Line Test for Functions: A set of points in a coordinate plane is the graph of y as a function of x if and only if no vertical line intersects the graph at more than one point.

Examples:

- Function
- Not a function
Definitions: A function f is **increasing** on an interval if, for any x_1 and x_2 in the interval, $x_1 < x_2$ implies $f(x_1) < f(x_2)$.

A function f is **decreasing** on an interval if, for any x_1 and x_2 in the interval, $x_1 < x_2$ implies $f(x_1) > f(x_2)$.

A function f is **constant** on an interval if, for any x_1 and x_2 in the interval, $f(x_1) = f(x_2)$.

![Diagram showing increasing, constant, and decreasing functions](image.png)
Definitions: A function value $f(a)$ is called a **relative minimum** of f if there exists an interval (x_1, x_2) that contains a such that $x_1 < x < x_2$ implies $f(a) \leq f(x)$.

A function value $f(a)$ is called a **relative maximum** of f if there exists an interval (x_1, x_2) that contains a such that $x_1 < x < x_2$ implies $f(a) \geq f(x)$.

Relative minima and relative maxima are called **relative extrema**.
Example: Use a graphing utility to find any relative minimum or relative maximum values of the function and those intervals where f is increasing and those intervals where f is decreasing.

1. $f(x) = (x-1)^2(x+2)$

Intervals of increase and decrease (x's)
- Increases on $(-\infty, -1)$ and $(1, \infty)$
- Decreases on $(-1, 1)$

Relative maximum $y = f(x) = 4$ when $x = -1$
Relative minimum $y = f(x) = 0$ when $x = 1$
3. \[h(x) = x\sqrt{4-x} \]

\[y = 4 - x \geq 0 \]

\[y = -x \geq -4 \iff x \leq 4 \]

relative maximum

\[y = f(x) \approx 3.079 \]

at \(x \approx 2.667 \)

Increasing \((-\infty, 2.667)\)

Decreasing \((2.667, 4)\)
Definition: The greatest integer function is denoted by $\|x\|$ and is defined by $f(x) = \|x\| = \text{the greatest integer less than or equal to } x$.
Example: (p.123 #82)

The cost of sending an overnight package from New York to Atlanta is $9.80 for a package weighing up to but not including 1 pound and $2.50 for each additional pound or portion of a pound. Use the greatest integer function to create a model for the cost C of overnight delivery of a package weighing x pounds, where $x > 0$. Sketch the graph of the function.

\[C = 9.80 + 2.50 \lceil x \rceil \]

<table>
<thead>
<tr>
<th>x</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>doesn't make sense</td>
</tr>
<tr>
<td>0.5</td>
<td>$9.80 + 2.50(0.5) = 9.80$</td>
</tr>
<tr>
<td>1</td>
<td>$9.80 + 2.50 = 12.30$</td>
</tr>
<tr>
<td>1.5</td>
<td>$9.80 + 2.50(1) = 12.30$</td>
</tr>
<tr>
<td>2</td>
<td>$9.80 + 2.50(2) = 14.80$</td>
</tr>
</tbody>
</table>

Steps should not be connected.
Definitions: A function f is **even** if, for each x in the domain of f, $f(-x) = f(x)$.

A function f is **odd** if, for each x in the domain of f, $f(-x) = -f(x)$.

Examples: Determine whether the function is even, odd, or neither.

1. $f(x) = -9$

 $f(-x) = -9 = f(x)$ **even**

2. $f(x) = -x^2 - 8$

 $f(-x) = -(-x)^2 - 8 = -x^2 - 8 = f(x)$ **even**

3. $g(x) = x^3 - 5x$

 $g(-x) = (-x)^3 - 5(-x) = -x^3 + 5x$

 $= - (x^3 - 5x) = -f(x)$ **odd**
Example: Find the coordinates of a second point on the graph of a function \(f \) if the given point is on the graph and the function is (a.) even and (b.) odd.

Given point: \((-3, 7)\)

\[- \frac{x}{3} \quad \frac{x}{3} \]

(a.) even \(f(-x) = f(x) \)

\[\Rightarrow f(3) = 7 \quad (3, 7)\]

(b.) odd \(f(-x) = -f(x) \)

\[f(3) = -7 \quad (3, -7)\]