IN CLASS REVIEW
TEST 1

1. Given the graph of \(f(x) \):
 - Find where \(f(x) \) has critical or stationary points.
 - Find where \(f(x) \) is increasing.
 - Find where \(f(x) \) is decreasing.
 - Find where \(f(x) \) has a relative minimum.
 - Find where \(f(x) \) has a relative maximum.

\[x = 6 \]

2. Use the graph to find the limits:
 - For what values of \(x \) does \(\lim g(x) \) not exist.
 - Find \(\lim g(x) \) when \(x \to 2 \).
 - Find \(\lim h(x) \) when \(x \to 3 \).
 - Find \(\lim k(x) \) when \(x \to 4 \).

\[\lim g(x) = -4 \]
\[\lim h(x) = 1 \]

3. Use the definition to find the derivative.
 \[\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]

\[\lim_{h \to 0} \frac{3(x+h)^2 - 4(x+h) - 1080}{h} = \]

\[h \to 0 \]
\[\lim_{h \to 0} \frac{6(x+h) - 4x - 1080}{h} = \]

\[\lim_{h \to 0} \frac{6x + 6x - 1080}{h} = \]

\[\lim_{h \to 0} \frac{12x}{h} = \]

\[\lim_{h \to 0} \frac{12x}{h} = \]

\[0 \]

MONTGOMERY COUNTY COMMUNITY COLLEGE

1. Given the graph of \(f(x) \), estimate:
 - \(a = 4 \)
 - \(b = 5 \)
 - \(c = \) \(\frac{5}{2} \)
 - \(d = \) \(\frac{7}{2} \)

2. Given the graph of \(f(x) \), graph \(f(x) \) and \(f''(x) \).

\[\frac{d^2y}{dx^2} = \]

\[\frac{2}{x} \]

\[\frac{1}{x} \]
5. Why is an inflection point a relative extreme of \(f(x) \)?

6. If \(f(x) > 0 \), what does this say about \(f(x) \)?

7. If \(f(x) \) is a relative extreme, then \(f(x) = 0 \).