Using the symmetric difference quotient: The TI 83 has a function that computes the symmetric difference quotient.

The function is located under MATH. number 9.

The syntax for the function is \(\text{SymDiff}(\text{function}, \ x, \ a, \ h) \).

1. Let \(f(x) = \frac{x^3}{3} - 2x^2 - 32x + 1 \)
 a. Graph \(f(x) \) in the window \(x: [-6, 12] \) and \(y: [-40, 60] \).

2. Let \(g(x) = 3x^4 - 4x^3 - 126x^2 + 54x \)
 a. Graph \(g(x) \) in the window \(x: [-10, 10] \) and \(y: [-1000, 1000] \).

b. What degree polynomial is \(f'(x) \)?

c. Use the calculator to solve \(f'(x) = 0 \).

Use Calc. zeros.

d. Use the graph of \(f'(x) \) to find the inflection points of \(f(x) \).

 e. Use the information from part a to graph \(f(x) \).

b. What degree polynomial is \(g'(x) \)?

c. Use the calculator to solve \(g'(x) = 0 \).

d. Use the graph of \(g'(x) \) to find the inflection points of \(g(x) \).

 a. Use the information from part a to graph \(g(x) \).
3. Graph \(f(x) = \sin(3x) \) and \(f'(x) \) in the window \(x: [0, 2\pi] \) and \(y: [-3, 3] \).

a. What is the amplitude of \(f(x) \)? 3

b. What is the amplitude of \(f'(x) \)?

c. What is the period of \(f(x) \) and \(f'(x) \)? \(\frac{2\pi}{3} \)

d. What is the domain and range of \(f'(x) \)?
\(-\infty, \infty\) \([-3, 3]\)

e. What is the domain and range of \(f(x) \)?
\(-\infty, \infty\) \([-1, 1]\)

Let \(f(x) = \frac{2}{3}x^3 - 2x^2 - 100x + 12 \)

1. Graph \(f(x) \) in the window \(x: [-5, 5] \) and \(y: [-1000, 1000] \)

2. What degree polynomial \(g(x) \)?

3. Use the discriminant to solve \(f'(x) = 0 \)

4. Use the graph of \(f'(x) \) to find the inflection points of \(f(x) \).

5. Use the information from parts 1, 3, and 4 to graph \(f(x) \).