Jigsaw

3.3 Real Zeros of Polynomial Functions
Synthetic Division
Remainder and Factor Theorem
Rational Zero Test
3.4 Fundamental Theorem of Algebra
Linear Factorization Theorem
Conjugate Pairs
Factoring a Polynomial

Quiz on End Behavior and Completing the Square

Homework: 3.3 & 3.4
\[f(x) = a(x - h)^2 + k \]

\[y = f(x) = a(x - 3)^2 - 5 \]

\[13 = a(0 - 3)^2 - 5 \]

\[13 = 9a - 5 \]

\[18 = 9a \]

\[2 = a \]
12. \(y = 2x^2 - 12x + 13 \)

\[
f(x) = a(x-h)^2 + k
\]

\[
f'(x) = 2x^2 - 12x + 13
\]

\[
f'(x) = 2 \left(x^2 - 6x + 9 \right) + 13 - 18
\]

\[
= 2 \left(x-3 \right)^2 - 5
\]

\[
\frac{1}{a}(6) = -3
\]

\[
(-3)^2 = 9
\]
12. $y = 2x^2 - 12x + 13$

23. $y = 2(x - 3)^2 - 5$
<table>
<thead>
<tr>
<th></th>
<th>13. $y = -2x^2 + 12x - 13$</th>
<th>24. $y = -2(x - 3)^2 + 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14. \[y = -0.5x^2 + 3x + 0.5 \]
25. \[y = -0.5(x - 3)^2 + 5 \]
15. \(y = -0.5x^2 - 3x - 9.5 \)
26. \(y = -0.5(x + 3)^2 - 5 \)
16. \(y = 0.25x^2 + 1.5x - 2.75 \)

27. \(y = 0.25(x + 3)^2 - 5 \)
17. \(y = 4x^2 + 24x + 31 \)

28. \(y = 4(x + 3)^2 - 5 \)
7. \(x = -2 \), \(y = -3 \)

18. \(y = x^2 + 4x + 1 \)

29. \(y = (x + 2)^2 - 3 \)
19. \(y = -x^2 - 4x - 7 \)
30. \(y = -(x + 2)^2 - 3 \)
20. \(y = -0.25x^2 - x + 2 \)

31. \(y = -0.25(x + 2)^2 + 3 \)
21. $y = -3x^2 + 12x - 9$

32. $y = -3(x - 2)^2 + 3$
<table>
<thead>
<tr>
<th>11.</th>
<th>22. $y = 0.5x^2 - 2x + 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>33. $y = 0.5(x - 2)^2 + 3$</td>
</tr>
</tbody>
</table>
Divide $2x^3 - 5x^2 + x - 8$ by $x - 3$.

\[
\begin{array}{c|cccc}
3 & 2 & -5 & 1 & -8 \\
\hline
& 3 & 6 & 12 & 24 \\
\end{array}
\]

$q = \frac{13}{2} = 6 + R1$

$13 = (2)(6) + 1$

\[2x^3 - 5x^2 + x - 8 = (x-3)(2x^2 + x + 4) + 4\]

\[
2x^3 + x^2 + 4x \\
-6x^2 - 3x - 12 \\
\hline
2x^3 - 5x^2 + x - 8
\]
\[
\begin{array}{c}
x - 3 \overbrace{2x^3 - 5x^2 + x - 8} \\
2x^3 - 6x^2 \\
\overbrace{x^2 + x} \\
x^2 - 3x \\
4x - 8 \\
\underline{4x - 12}
\end{array}
\]
The result is \(2x^2 + x + 4 + \frac{4}{x - 3} \).
The Division Algorithm

If \(f(x) \) and \(d(x) \) are polynomials such that \(d(x) \neq 0 \), and the degree of \(d(x) \) is less than or equal to the degree of \(f(x) \), there exist unique polynomials such \(q(x) \) and \(r(x) \) such that

\[
f(x) = d(x)q(x) + r(x)
\]

where \(r(x) = 0 \) or the degree of \(r(x) \) is less than the degree of \(d(x) \). If the remainder \(r(x) \) is zero, \(d(x) \) divides evenly into \(f(x) \).

\[
\frac{f(x)}{d(x)} \text{ is improper.} \quad \frac{r(x)}{d(x)} \text{ is proper.}
\]

\[
f(3) = 2(3)^3 - 5(3)^2 + 3 - 8
\]

\[
= 2 \cdot 27 - 5 \cdot 9 + 3 - 8 = 4
\]
Example: Perform long division and write in the form
\[f(x) = d(x)q(x) + r(x). \]

1. \[\frac{x^5 + 7}{x^3 - 1} \]

\[
\begin{array}{c|ccccc}
 & x^2 & + & 2x^2 & + 7 \\
\hline
x^3 - 1 & x^5 & + & 0x^4 & - x^2 & + 7 \\
 & \underline{-x^5 + x^2} & & \underline{+ x^2} & & \underline{+ 7} \\
 & 0 & + & 2x^2 & + 7 \\
 & \underline{- 2x^2} & & \underline{+ 2} \\
 & 0 & + & 9 \\
\end{array}
\]

\[
\begin{array}{c|cc}
 & 2 & + 13 \\
\hline
6 & 13 & + 1 \\
\end{array}
\]

Quotient: \[2x^2 + \frac{9}{x^3 - 1} \]

Remainder: 1
Synthetic Division is a short-cut process for dividing a polynomial of any degree by a polynomial of the form $x - k$.

Example: Use synthetic division to divide.

\[
\frac{5x^3 + 18x^2 + 7x - 6}{x + 3}
\]

\[
\begin{array}{c|cccc}
-3 & 5 & 18 & 7 & -6 \\
\hline
 & 5 & -9 & 6 \\
\hline
 & 5 & 3 & -2 & 0
\end{array}
\]

Thus, $5x^3 + 18x^2 + 7x - 6 = (x + 3)(5x^2 + 3x - 2)$ and $f(x) = (x + 3)(5x - 2)(x + 1)$.
The Remainder Theorem
If a polynomial \(f(x) \) is divided by \(x - k \), the remainder is \(r = f(k) \).

The Factor Theorem
A polynomial \(f(x) \) has a factor \((x - k) \) if and only if \(f(k) = 0 \).
Using the Remainder in Synthetic Division

In summary, the remainder \(r \), obtained in synthetic division of \(f(x) \) by \(x - k \), provides the following information.

1. The remainder \(r \) gives the exact value of \(f \) at \(r = f(k) \).
2. If \(r = 0 \), \((x - k) \) is a factor of \(f(x) \).
3. If \(r = 0 \), \((k, 0) \) is an \(x \)-intercept of the graph of \(f \).
3. Use synthetic division and the Remainder Theorem to find \(f(6) = 1360 \) for \(f(x) = 10x^4 - 50x^3 - 800 \).
4. Show that \(x = -2 \) is a zero (or root) of \(x^3 + 2x^2 - 2x - 4 \). Factor completely and find all real zeros.

\[x^3 + 2x^2 - 2x - 4 = (x+2)(x^2 - 2) = (x+2)(x-\sqrt{2})(x+\sqrt{2}) \]

\[\pm 1 \pm 2 \pm 4 \]

\[\begin{array}{cccc}
1 & 2 & -2 & -4 \\
\hline
1 & 3 & 1 & -3 \\
\hline
1 & 3 & 1 & -3 \\
\end{array} \]

\[x^2 - 2 = (x-\sqrt{2})(x+\sqrt{2}) \]

\[x^2 - 2 = 0 \]
\[x^2 = 2 \]
\[x = \pm \sqrt{2} \]
5. Use the Zero feature of your calculator to approximate the zeros of \(f(s) = s^3 - 12s^2 + 40s - 24 \) to three decimal places. Determine one of the exact zeros and use synthetic division to verify it. Factor completely.
The Rational Zero Test

If the polynomial $f(x) = a_n x^n + \ldots + a_1 x + a_0$ has integer coefficients, every rational zero of f has the form

$$\text{Rational zero} = \frac{p}{q}$$

Where p and q have no common factors other than 1, p is a factor of the constant term a_0 and q is a factor of the leading coefficient a_n.
Use the rational root theorem to solve:
Solve \(x^3 - 7x - 6 = 0 \).
Use the rational root theorem to solve:
Solve \(x^3 - 7x - 6 = 0 \).

\[p: \pm 1, \pm 2, \pm 3, \pm 6 \]
\[q: \pm 1 \]
\[p/q: \pm 1, \pm 2, \pm 3, \pm 6 \]
Examples: List all possible rational zeros.

6. \(f(x) = 4x^4 - 17x^2 + 4 \)

\[
\begin{array}{cccccc}
6 & -1 & -13 & 8 \\
6 & 5 & -8 \\
\hline
6 & 5 & -8 & \mathbf{0}
\end{array}
\]

7. \(f(x) = 6x^3 - x^2 - 13x + 8 \)

\[
(x-1)(6x^2 + 5x - 8)
\]

\[
\pm 1 \pm 2 \pm 4 \pm 8
\]

\[
\pm 1 \pm 2 \pm 3 \pm 6
\]

\[
\pm 1 \pm \frac{1}{2} \pm \frac{2}{3} \pm \frac{4}{3} \pm \frac{8}{3}
\]

\[
\pm \frac{1}{6}
\]
Examples: Find all real zeros.

8. \(h(x) = -x^3 - 9x^2 + 20x - 12 \)
9. \[f(z) = 12z^3 - 4z^2 - 27z + 9 \]
Synthetic Division (of a Cubic Polynomial)

To divide $ax^3 + bx^2 + cx + d$ by $x - k$, use the following pattern.

- **Vertical pattern:** Add terms.
- **Diagonal pattern:** Multiply by k.

Coefficients of dividend:
- ka

Coefficients of quotient:
- a
- c
- d

Remainder:
- r
The Fundamental Theorem of Algebra

If $f(x)$ is a polynomial of degree n, where $n>0$, then f has at least one zero in the complex number system.
Linear Factorization Theorem

If \(f(x) \) is a polynomial of degree \(n \), where \(n > 0 \), \(f \) has precisely \(n \) linear factors

\[
f(x) = a_n(x - c_1)(x - c_2)\ldots(x - c_n)
\]

where \(c_1, c_2, \ldots, c_n \) are complex numbers. (Zeros may not be distinct!)
Solve $x^3 + 6x - 7 = 0$.
\[p: \pm 1, \pm 7 \]
\[q: \pm 1 \]
\[p/q: \pm 1, \pm 7 \]

Use synthetic division to find a number from the list that is a solution.

\begin{array}{c|cccc}
1 & 1 & 0 & 6 & -7 \\
 & 1 & 1 & 7 & 0 \\
\end{array}

\begin{array}{c|cccc}
1 & 1 & 7 & 0 \\
\end{array}
We know have \((x - 1)(x^2 + x + 7) = 0\). \(x - 1 = 0 \Rightarrow x = 1\).

\[x^2 + x + 7 = 0 \Rightarrow x = -\frac{1}{2} \pm \frac{3\sqrt{3}}{2}i.\]
Examples: Find all zeros and write as the product of linear factors.

1. \(f(y) = y^4 - 625 \)

2. \(f(x) = x^3 + 11x^2 + 39x + 29 \)
3. \(h(x) = x^4 + 6x^3 + 10x^2 + 6x + 9 \)
Complex Zeros Occur in Conjugate Pairs

Let $f(x)$ be a polynomial function that has real coefficients.

If $a + bi$, where $b \neq 0$, is a zero of the function, the conjugate $a - bi$ is also a zero of the function.
Factors of a Polynomial

Every polynomial of degree \(n > 0 \) with real coefficients can be written as the product of linear and quadratic factors with real coefficients, where the quadratic factors have no real zeros.

Definition: A quadratic factor with no real zeros is said to be prime or irreducible over the reals.
Factor \(f(x) = x^4 - 12x^2 - 13 \)

a) as the product of factors that irreducible over the rationals.

\[(x^2 - 13)(x^2 + 1)\]
b) as the product of factors that are irreducible over the reals.

\[(x + \sqrt{13})(x - \sqrt{13})(x^2 + 1)\]
c) completely.

\((x + \sqrt{13})(x - \sqrt{13})(x + i)(x - i)\)
Example: Write the polynomial \(f(x) = x^4 - 2x^3 - 3x^2 + 12x - 18 \)

(a) as the product of factors that are irreducible over the \textit{rationals},

(b) as the product of linear and quadratic factors that are irreducible over the \textit{reals},

(c) in completely factored form.