1. Simplify each expression using the order of operations. (20 points)
 a. \(\frac{3 + 2}{5} \times \frac{2}{3} \)
 b. \(3 \times (2 + 1) \)

2. Solve for \(x \) in each:
 a. \(5x = \frac{H - 3y}{5} \)
 b. \(3y + 2 = \frac{15x + 3x}{3x} - 3x \)
 c. \(2x + 2 = \frac{15}{2} \)
 d. \(\frac{5}{3} \)
 e. \(x = \frac{H - 3y}{5} \)
 f. \(x = \frac{13}{2} \)

3. Find the slope and y-intercept in the line \(4x - 3y = 5 \):
 - Slope: \(m = \frac{4}{3} \)
 - Y-intercept: \(b = -\frac{5}{3} \)
 - Points: \((0, -\frac{5}{3}) \)

4. State whether the two lines below are parallel, perpendicular, or neither (5 points):
 - Line 1: \(y = 4x + 8 \)
 - Line 2: \(y = -\frac{x}{5} + 15 \)
 - Lines: \(m_1 = \frac{4}{5}, m_2 = -\frac{1}{5} \)
 - Graphical representation of the lines

5. a. Solve the point of intersection of the lines.
 b. Graphical representation of the lines and the point of intersection.
2. \(\frac{x}{y} = \frac{4}{x} \)
\[\frac{2x}{y} = \frac{4}{x} \]
\[\frac{y}{4} = \frac{y}{0} \]
\[m = \frac{4}{15} \]

3. Use the rules for exponents to simplify the following. No negative exponent in the final answer.

a. \((x^2)^3 \)
b. \(x^\frac{1}{2} x^\frac{2}{3} \)
\[= 3x^2 \]
\[= 9x^2 \]
\[= 6x^2 \]
\[= (-3)^2 \]
\[= 9x^2 \]
\[= 3x^2 \]
\[= 6x^2 \]
\[= 9x^2 \]

4. Find the equation of the line that passes through the point \((5, -3) \) and parallel to the graph of \(y = 4x - 20 \).

\[y = 4x + 8 \]
\[m = 4 \]
\[y = 4x - 20 \]
\[y = 4x - 2 \]
\[y = 4x - 23 \]
\[y = 4x - 8 \]
\[y = 4x - 20 \]
\[y = 4x - 23 \]
\[y = 4x - 8 \]
\[y = 4x - 20 \]
\[y = 4x - 23 \]
11. Given: \(f(x) = 3x - 2 \) (eqs each)

Find:

a) \(f(3) \)

\[f(3) = 3(3) - 2 = 7 \]

b. \(f(0) \)

\[f(0) = 3(0) - 2 = -2 \]

Graph:

- The function \(f(x) = 2x + 1 \) is plotted on the graph.
- The domain \(D \) is indicated as \([1, 5]\)
- The range \(R \) is indicated as \([1, 4]\)