1. Graph \(y = -|x| + 6 \)

2. Find an equation of a line passing through \((-1,-3)\) and parallel to the line \(2x + y = 19\)

\[
y = -2x - 5
\]

3. Given \(f(x) = \begin{cases} \sqrt{-x}, & x \leq 0 \\ 6x, & x > 0 \end{cases} \) find \(f(4) \)

\[
24
\]

4. If \(f(x) = x^2 - 2x \), find \(\frac{f(x + h) - f(x)}{h}, h \neq 0 \)

\[
2x-2+h
\]

5. Find the domain of \(f(x) = \sqrt{5-x} \)

\[
(-\infty, 5]
\]

6. Graph \(f(x) = [x+1] \)

7. Determine where function is increasing, decreasing, and whether it has a relative maximum or relative minimum.

inc. \((-\infty, -2) (0, \infty)\)
dec. \((-2, 0)\)
rel max @ \(x = -2 \)
rel min @ \(x = 0 \)
8. Determine whether the functions are odd or even or neither.
 a. \(f(x) = 2x^3 + 3x^2 \) \(\text{neither} \)
 b. \(f(x) = 3x^2 - 6 \) \(\text{even} \)

9. Find an equation of a function that shifts \(f(x) = x^2 \) two units up vertically, three units to the right horizontally.
 \(f(x) = (x-3)^2 + 2 \)

10. Graph \(g(x) = -x^2 + 2 \) using \(f(x) = x^2 \)

11. Given \(f(x) = x + 1 \) \(g(x) = x + 9 \)
 \(g(f(x)) = g(x+1) \)
 a. Find \((g \circ f)(x) = \) \((g \circ f)(x) = x + 10 \)
 b. Find \((g + f)(x) = \) \(2x + 10 \)
 c. Find \(f^{-1}(x) = \) \(x - 1 \)

12. Show \(f(x) = \frac{x}{2} \) and \(g(x) = 2x \) are inverse of each other.
 \(f \circ g(x) = x \)
 \(f(g(x)) = \)
 \(f(2x) = \)
 \(g \left(\frac{x}{2} \right) = \)
 \(\frac{2x}{2} = \)
 \(2 \left(\frac{x}{2} \right) = \)
 \(x = \)