MAT223 Exam Review

Determine if a DE is linear or nonlinear and how many arbitrary constants are in the general solution. (#1)

Sketch the phase portrait for a DE of the form \(\frac{dx}{dt} = x(a - bx) \). (#1)

Identify the trajectory of a periodic solution. (pp. 144 - 146)

Verify a particular solution to a 2nd order linear DE. (#1)

Find the general solution to a 2nd order homogeneous linear DE. (#2)

Find the particular solution to a 2nd order linear DE. (#2)
Given the graph of \(f(t) \), find the graph of a function involving
\(f(t - \alpha) \) and/or \(U(t - \alpha) \).

Eliminate one variable from a system of linear first-order DE's.

Evaluate 3 Laplace transforms.

Solve 2 DE's by separation of variables or a method of your choice.

Define local truncation error.

Use a Wronskian to determine whether or not a set of functions is linearly independent.
Sketch a trajectory for a 2nd order linear DE. (#2)
For this same DE, classify (0, 0) as unstable, stable (not asymptotically stable), or asymptotically stable. (#2)
Find the characteristic equation for a system of DE’s. (#3)
For the same system, find the eigenvalues and eigenvectors of the matrix of coefficients. (#3)
Given the DE and formulas for \(W, W_1, W_2 \), use the method of variation of parameters to find solution. (#2)
Set up the DE for an a spring problem. (#2)

Given y_c for a linear DE, what functions should be tried for y_p using the method of undetermined coefficients. (#2)

Describe the difference between Euler and Runge-Kutta. (Section 2.5) (Errors)
Find the recurrence formula for the power series solution to a DE.

Given the recurrence formula, find a few coefficients.

Find the singular points of a DE.

Determine whether a given singular point is regular or not.

Find the indicial roots for a Frobenius-type solution.

\[y' - 2y = 0 \]

<table>
<thead>
<tr>
<th>(c_0)</th>
<th>(c_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_2 = 3c_1)</td>
<td>(c_3 = c_1)</td>
</tr>
<tr>
<td>(c_4 = \frac{1}{3}c_2 = \frac{1}{3}(3c_0) = c_0) [(k = 2)]</td>
<td>(c_5 = -\left(\frac{3-3}{3+1}\right)c_2 = 0) [(k = 3)]</td>
</tr>
<tr>
<td>(c_6 = -\frac{1}{5}c_4 = -\frac{1}{5}(c_3) = -\frac{1}{5}c_1)</td>
<td>(c_7 = \left(\frac{5-3}{5+1}\right)c_2 = 0)</td>
</tr>
</tbody>
</table>
Examples: Determine the singular points and classify them as regular or irregular.

1. \(y'' - y' + \frac{1}{x-1}y = 0 \)

0 is a regular singular point
1 is an irregular singular point

\(\square \) and \(\square \)
Remember, c_n cannot be 0

$[2k(k-1)-2(k+1)]c_k x^k = 0 \quad c_k \neq 0$ x^r is not identically 0

$2(r-1)r - r + 1 = 0$ (indicial equation)

$2r^2 - 2r - r + 1 = 0$

$2r^2 - 3r + 1 = 0$ $(2r-1)(r-1) = 0$

$r = \frac{1}{2}, 1$ indicicial roots