TABLE 13.7 Areas under the Standard Normal Curve (the z-table)

The column under A gives the area under the entire curve that is between $z = 0$ (or the mean) and a positive value of z.

z	A																		
.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
.04	.000	.004	.008	.012	.016	.020	.024	.028	.032	.036	.040	.044	.048	.052	.056	.060	.064	.068	.072
.07	.076	.080	.084	.088	.092	.096	.100	.104	.108	.112	.116	.120	.124	.128	.132	.136	.140	.144	.148

Title: Mar 29 - 11:21 AM (1 of 15)
In the following, assume that the heights of 18-year old males are normally distributed with a mean of 69 in. and a standard deviation of 6 in.

\[z = \frac{x - \mu}{\sigma} = \frac{x - 69}{6} \]

5. What percent of 18-year old males are less than 75 in. tall?

\[P(x < 75) = P\left(\frac{x - 69}{6} < \frac{75 - 69}{6}\right) = P(z < 1) \]

Convert to percent.

\[= .5 + .341 \]

\[= .841 \]

\[= 84.1\% \]
6. If 1000 18-year old males are selected at random, how many will be less than 72 in. tall?

\[
P(x < 72) = P\left(\frac{x - 69}{6} < \frac{72 - 69}{6}\right) = P(z < .5)
\]

Multiply by 1000.

\[
= .5 + .192
= .692 \text{ or } 69.2\%
\]

Out of 1000, \(1000 \times .692\) = 692 should be less than 72 inches tall.
In the following, the wearout mileage of a certain tire is normally distributed with a mean of 35,000 miles and standard deviation of 2500 miles.

\[x = \text{wearout mileage} \]
\[z = \frac{x - 35000}{2500} \]

7. Find the percent of tires that will last at least 39,000 miles.

\[P(x \geq 39000) = P\left(\frac{x - 35000}{2500} \geq \frac{39000 - 35000}{2500} \right) = P(z \geq 1.6) \]

Convert to a percent.

\[= .5 - .445 \]
\[= .055 \]
\[= 5.5\% \]
84. **Grading on a Normal Curve** Mr. Sanderson marks his class on a normal curve. Those with z-scores above 1.8 will receive an A, those between 1.8 and 1.1 will receive a B, those between 1.1 and -1.2 will receive a C, those between -1.2 and -1.9 will receive a D, and those under -1.9 will receive an F. Find the percent of grades that will be A, B, C, D, and F.

![Graph showing normal distribution and percentiles]

- A: 3.6%
- B: 10%
- C: 74.9%
- D: 8.6%
- F: 2.9%

Homework Section 13.7
1. (2% each) Given the frequency distribution:

<table>
<thead>
<tr>
<th>Class</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-7</td>
<td>5</td>
</tr>
<tr>
<td>8-14</td>
<td>4</td>
</tr>
<tr>
<td>15-21</td>
<td>8</td>
</tr>
<tr>
<td>22-28</td>
<td>6</td>
</tr>
<tr>
<td>29-35</td>
<td>3</td>
</tr>
<tr>
<td>38-42</td>
<td>2</td>
</tr>
</tbody>
</table>

The total number of observed values is **28**.

a. The lower class limit of the second class is **8**.

b. The class width is **7**.

c. The modal class is **15-21** (3rd class).

d. The class mark of the third class is **18.5**.

\[
\frac{15+21}{2} = \frac{36}{2}
\]

e. The total number of observed values is **28**.
2. (5% each) A survey of the 8745 vehicles on the campus of State University yielded the following circle graph.

![Circle graph showing vehicle types: Motorcycles 11%, Convertibles 14%, Hatchbacks 35%, Vans 9%, Sedans 3%]

a. Together, what percent of the vehicles are either vans or sedans?

\[
9 + 5 = 14 \quad \text{a.} \quad \frac{14}{8745} \times 100 = 1.57\%
\]

b. How many degrees are in the piece representing the pickups?

\[
26\% \text{ of } 360 \quad \text{b.} \quad 0.26 \times 360 = 93.6^\circ
\]
3. (10%) Construct a histogram of the given frequency distribution. The frequency distribution indicates the age of 726 students in a college statistics course.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Number of persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>160</td>
</tr>
<tr>
<td>19</td>
<td>138</td>
</tr>
<tr>
<td>20</td>
<td>128</td>
</tr>
<tr>
<td>21</td>
<td>98</td>
</tr>
<tr>
<td>22</td>
<td>84</td>
</tr>
<tr>
<td>23</td>
<td>62</td>
</tr>
<tr>
<td>24</td>
<td>42</td>
</tr>
<tr>
<td>25</td>
<td>14</td>
</tr>
</tbody>
</table>

Title: Apr 27 - 10:07 AM (8 of 15)
4. (5% each)

a. How many people were 20 years old?
 a. 9

b. How many people at least 23 years old?
 b. 8

23, 24, 25, 26

3 + 2 + 2 + 1 = 8
5. (5%) Construct a stem-and-leaf display for the given data table.

```
<table>
<thead>
<tr>
<th>Stems</th>
<th>Leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1 2 4 5</td>
</tr>
<tr>
<td>4</td>
<td>0 1 3 9</td>
</tr>
<tr>
<td>5</td>
<td>0 3 4</td>
</tr>
<tr>
<td>6</td>
<td>1 4 6 6 8</td>
</tr>
<tr>
<td>7</td>
<td>1 2</td>
</tr>
</tbody>
</table>
```
6. (4% each) Given the set of data: 16, 22, 25, 30, 36, 36, 39
Find:

a. The mean ____________.

b. The median ____________.

c. The mode ____________.

d. The midrange ____________.

e. The range ____________.
7. (5% each)
 a. Complete the following table:

<table>
<thead>
<tr>
<th>X</th>
<th>X - \bar{X}</th>
<th>(X - 52)^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>24</td>
<td>576</td>
</tr>
<tr>
<td>60</td>
<td>28</td>
<td>784</td>
</tr>
<tr>
<td>74</td>
<td>12</td>
<td>144</td>
</tr>
<tr>
<td>40</td>
<td>-12</td>
<td>144</td>
</tr>
<tr>
<td>10</td>
<td>-42</td>
<td>1764</td>
</tr>
<tr>
<td>260</td>
<td></td>
<td>3032</td>
</tr>
</tbody>
</table>

 \[
 \frac{260}{5} = 52
 \]

 b. The standard deviation is \boxed{27.5}

 \[
 S = \sqrt{\frac{\sum(X - \bar{X})^2}{n-1}} = \sqrt{\frac{3032}{4}}
 \]

 \[
 = \sqrt{758} = 27.5
 \]
8. The weight of cats that have been treated by a veterinarian is normally distributed with a mean of 11.5 pounds and a standard deviation of 2.5 pounds. What percentage of cats weigh

\[x = \text{weight of cat} \]

\[z = \frac{x - 11.5}{2.5} \]

a. at least 15 pounds?

\[P(x \geq 15) = P\left(\frac{x - 11.5}{2.5} \geq \frac{15 - 11.5}{2.5} \right) \]

\[= P(z \geq 1.4) \]

\[= .5 - .419 = .081 = 8.1\% \]
b. between 11.5 and 14 pounds?

\[P(11.5 \leq X \leq 14) \]

= \[P\left(\frac{11.5 - 11.5}{2.5} \leq \frac{X - 11.5}{2.5} \leq \frac{14 - 11.5}{2.5}\right) \]

= \[P(0 \leq z \leq 1) = 0.341 \]

\(\approx 34.1\% \)
Test #4

Tuesday, May 9
12:30 - 2:30
Parkhouse 107